Epoxy Coatings Physically Cured with Hydroxyl-contained Silica Nanospheres and Halloysite nanotubes

Authors

  • A.H. Navarchian Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, P.O. Box: 81746-73441, Isfahan, Iran.
  • M. Jouyandeh Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, P.O. Box: 81746-73441, Isfahan, Iran.
  • M.R. Saeb Department of Resin and Additives, Institute for Color Science and Technology, P.O. Box: 16765-654, Tehran, Iran.
  • O. Moini Jazani Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, P.O. Box: 81746-73441, Isfahan, Iran.
Abstract:

Epoxy coatings are usually reinforced by the use of nanofillers, but reactive nanofillers having physical tendency towards epoxide ring opening are preferable. In this work, nanosilica (SiO2) and halloysite nanotubes (HNTs) known for their hydroxyl-contained surface are used and their effects on the curing behavior of an epoxy/amine coating is compared. The spherical and tubular nanoparticles used in epoxy led to somewhat different crosslinking. Epoxy/amine systems containing equivalent amount of silica spherical and halloysite nanotube particles were compared for their cure characteristics, i.e. temperatures of starting and ending of curing reaction (TONSET and TENDSET), the exothermal peak temperature (Tp), the temperature range among which curing reaction was completed (∆T= TENDSET - TONSET) and the total heat of curing reaction (∆H). Fourier-transform infrared spectrophotometry and scanning electron microscopy analyses were used to assess formation of SiO2. Nonisothermal differential scanning calorimetry was performed at different heating rates and cure characteristics together with values of glass transition temperature of two kinds of systems containing SiO2 and HNTs were calculated, where both nanofillers revealed accelerating role in epoxy curing reaction.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Epoxy-based Flame Retardant Nanocomposite Coatings: Comparison Between Functions of Expandable Graphite and Halloysite Nanotubes

Whis work presents a study on the flammability of epoxy coatings containing two types of nano-scale fillers as potential flame retardants: expandable graphite (EG) and halloysite nanotubes (HNTs). Both nanocomposites are prepared by incorporation of the same amount of nanofiller into the epoxy resin for the sake of comparison. Fire retardant nanocomposite coatings are cured through a two-stage ...

full text

Polyurethane Coatings Reinforced by Halloysite Nanotubes

The pencil hardness of a two-component polyurethane coating was improved by adding halloysite nanotubes to the recipe at a weight fraction of less than 10%. The pencil hardness was around F for the unfilled coating and increased to around 2H upon filling. It was important to silanize the surface of the filler in order to achieve good coupling to the matrix. Sonicating the sample during drying a...

full text

TiO2 nanotubes and mesoporous silica as containers in self-healing epoxy coatings

The potential of inorganic nanomaterials as reservoirs for healing agents is presented here. Mesoporous silica (SBA-15) and TiO2 nanotubes (TNTs) were synthesized. Both epoxy-encapsulated TiO2 nanotubes and amine-immobilized mesoporous silica were incorporated into epoxy and subsequently coated on a carbon steel substrate. The encapsulated TiO2 nanotubes was quantitatively estimated using a 'de...

full text

Mechanical and Thermal Properties of Epoxy Composites Containing Zirconium Oxide Impregnated Halloysite Nanotubes

Liquid epoxy resins have received much attention from both academia and the chemical industry as eco-friendly volatile organic compound (VOC)-free alternatives for applications in coatings and adhesives, especially in those used in households. Epoxy resins show high chemical resistance and high creep resistance. However, due to their brittleness and lack of thermal stability, additional fillers...

full text

Surface Improvement of Halloysite Nanotubes

A novel development on halloysite-polyvinyl alcohol (HNTs-PVA) nanocomposites has been conducted using malonic acid (MA) by crosslinking PVA and HNTs. PVA-MA crosslinking produces smooth surfaces, which play an important role in enhancing the properties of HNTs-PVA nanocomposite. The crystallographic structures of crosslinked HNTs-PVA show almost no change as depicted by the X-ray diffraction (...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 11  issue 4

pages  199- 207

publication date 2018-11-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023